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We report accurate coupled-channel quantum calculations of state-to-state and degeneracy-averaged differential
cross sections for the rotationally inelastic collision Ar+ HF(Vi ) 0, j i ) 0, mi ) 0) f Ar + HF(Vf ) 0, j f,
mf), whereVi, j i, mi andVf, j f, mf are initial and final vibrational, rotational, and helicity quantum numbers,
respectively. The calculations have been performed at eight collision energies and assume that HF is a rigid
rotator. Structure in the differential cross sections is analyzed using the unrestricted version of nearside-
farside (NF) theory. The NF theory decomposes the partial wave series (PWS) for the helicity scattering
amplitude into two subamplitudes, one N, the other F. This is the first application of NF theory to an atom-
heteronuclear molecule inelastic collision. It is demonstrated that the NF technique provides a clear physical
interpretation of the angular scattering, except sometimes for scattering angles,θ, close to 0° and 180°. It is
also shown that a resummation of the PWS can improve the usefulness of the NF technique, when the N and
F cross sections possess small oscillations. The resummation procedure exploits recurrence properties of reduced
rotation matrix elements to extract a factor (R + âcos θ)-1 from the PWS, whereR and â are constants.
Criteria for choosingR andâ so as to obtain a physically meaningful NF decomposition are discussed.

1. Introduction

The scattering of HF by Ar is an important example of
rotational energy transfer for the collision of a heteronuclear
diatomic molecule with an atom. State-to-state integral cross
sections (for vibrationally excited HF) have been measured by
Barnes et al.,1,2 while experimental angular distributions have
been reported by Vohralik et al.,3 Rawluk et al.,4 and Chapman
et al.5 for the vibrational ground state of HF. There have also
been many spectroscopic studies of the ArHF van der Waals
complex. Hutson6 has used the spectroscopic data to construct
an intermolecular potential energy function that has performed
well in reproducing5,7-9 the scattering measurements (see also
refs 10-13).

The purpose of this paper is to report a theoretical investiga-
tion of the angular scattering for the collision

where Vi, j i, mi and Vf, jf, mf are vibrational, rotational, and
helicity quantum numbers for the initial and final states,
respectively. The helicitiesmi, mf are the quantum numbers
associated with the projection of the HF rotational angular
momentum onto the relative velocity vector. Our calculations
have been stimulated by pevious theoretical research, in
particular that of Rawluk et al.7 and of Barrett et al.8,9 Their
work has shown that the degeneracy-averaged differential cross
sections for HF+ Ar exhibit interesting structures, which
depend on the balance between the attractive and repulsive
anisotropies in the intermolecular potential.

This paper makes three contributions to understanding the
dynamics of the HF+ Ar collision system:

(1) We report accurate quantum coupled-channel (CC)
scattering calculations of state-to-state and degeneracy averaged
angular distributions using the Hutson potential assuming that
HF is a rigid rotator. These calculations, which extend earlier
work,5,7-9 have been performed at eight collision energies, with
the lowest one being that used in the dopplerimetry experiment
of Chapman et al.,5 while the highest one is that employed in
the crossed molecular beam experiment of Rawluk et al.4

(2) We carry outnearside-farside(NF) analyses of the CC
angular distributions obtained in (1). This is the first application
of NF theory14-25 to the differential cross sections of hetero-
nuclear-molecule atom collisions.

It is well-known that CC computations have the disadvantage
that it is difficult (and often impossible) to understand the
physical origin of structure in the angular scattering.26 This is
because many numerically significant terms contribute to the
partial wave series (PWS) representation of the scattering
amplitude. Recently, however, it has been shown that the NF
method14-25 provides a relatively simple way to extract (partial)
physical information from a CC computation of the PWS.

In a NF analysis, the PWS scattering amplitude is decomposed
into two subamplitudes. These are the N subamplitude, which
is associated with semiclassical trajectories scattered from the
nearside of the target, and the F subamplitude, which is
associated with semiclassical trajectories scattered from the
farside of the target. Structure in an angular distribution can
arise from the N subamplitude, or from the F subamplitude or
from interference between the N and F subamplitudes. It is
important to note that the inputs to a NF analysis are the same
CC scattering matrix elements that are used to sum the PWS
for the full scattering amplitude. Also semiclassical techniques,
such as saddle point or stationary phase integration are not used,
although the semiclassical picture is still evident.
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(3) We applyresummationtechniques22,23 to the PWS for
the scattering amplitude. In particular, we show that a resum-
mation of the PWS followed by a NF decomposition provides
a clear physical interpretation of the angular scattering for those
cases where the N and F cross sections for the unresummed
PWS possess unphysical oscillations. The resummation exploits
recurrence properties of reduced rotation matrix elements.

In all three applications just described, the initial and final
vibrational quantum numbers for HF are kept fixed atVi ) Vf

) 0. The labelsVi, Vf will therefore be omitted from now on, to
keep the notation as simple as possible. The NF theory for
collision (eq 1.1) is presented in section 2, while section 3
describes the resummation of the PWS. The intermolecular
potential and CC computations are outlined in section 4. Our
CC and NF results for the angular scattering are presented and
discussed in section 5. Section 6 contains our conclusions.

2. Nearside-Farside Analysis

Nearside-farside theory has been used to analyze the
differential cross sections of many different elastic and inelastic
collision systems:17,20,25He + Ne, H+ + Ar, Ne + D2, He +
N2, and Ar+ N2 as well as the reactions14-16,18,24Cl + HCl f
ClH + Cl, F + H2 f FH + H, F + HDf FH + D (or FD +
H), and H + D2 f HD + D. This Section presents the key
equations17,25 needed to carry out a NF analysis for the
differential cross section of a general state-to-state A+ BC
inelastic collision.

The starting point is the PWS for the scattering amplitude,
fjfmfrj imi(θ), in the helicity representation:27, 28

whereθ is the scattering angle,kj i is the translational wave-
number for relative motion in the initial channel,J is the total
angular momentum quantum number,Sjfmfrj imi

J is a body-fixed
scattering matrix element,δjfj i is a Kronecker delta function and
dmf,mi

J (θ) is a reduced rotation matrix element as defined by
Edmonds.29 A constant phase has been omitted when writing
down eq 2.1. The state-to-state differential cross section is given
by

Possible values formf, mi in eq 2.1 are 0,(1, (2, ...,(J with
J ) 0, 1, 2, ... . The first nonzero term occurs forJ ) Jmin )
max(|mf|,|mi|). It is convenient in the NF analysis17,25 to use
values formf, mi such thatmf - mi andmf + mi are alwaysg
0, i.e., we requireJ g mf g|mi|. This can be achieved by means
of the following symmetry relations obeyed by thedmf,mi

J (θ)
[ref 29, p 60, eqs 4.2.5 and 4.2.6]

In the following, we shall assume that this ordering ofmf and
mi has been done. It then follows thatJmin ) mf g 0.

Our aim is to separate the scattering amplitude into two
subamplitudes, N and F, corresponding to angular waves
travelling clockwise and anticlockwise inθ respectively.17,25

This can be accomplished by decomposingdmf,mi

J (θ) into the

sum of twotraVelling angular functions(for θ * 0, π)

where25

In eq 2.5,emf,mi

J (θ) is a reduced rotation matrix element of the
second kind. It is defined by25

whereQn
(R,â)(cosθ) is a Jacobi function of the second kind of

degree n with parametersR andâ defined “on the cut ”-1 <
cosθ < 1. The normalization factor in eq 2.6 is

The properties ofemf,mi

J (θ) and Qn
(R,â)(cos θ) have been dis-

cussed in detail in refs 17, 19, and 25. In particular,emf,mi

J (θ)
obeys the same symmetry relations (eq 2.3) asdmf,mi

J (θ).
In the limit of largeJ . mf, mi, the following asymptotic

approximations are valid21,25 for 0 < θ < π:

and

It then follows from eqs 2.5, 2.7, and 2.8 that

which is valid for J f ∞ and 0 < θ < π. The term

exp{+ i[(J + 1
2
)θ]} in eq 2.9 physically represents a travelling

angular wave moving anticlockwise inθ. A semi-
classical analysis shows that this wave typically originates from
the farside of the target for an observer in the upper half of
the scattering plane at infinity.21 Conversely, the term

exp{- i[(J + 1
2
)θ]} in eq 2.9 represents a travelling angular

wave moving clockwise inθ, which typically originates
semiclassically from the nearside of the target for an observer
in the upper half of the scattering plane at infinity.21 This
analysis lets us identify the superscript (+) with F and the
superscript (-) with N.

fjfmfrj imi
(θ) ) (2ikj i

)-1 ∑
J ) Jmin

∞

(2J + 1)(Sjfmfrj imi

J -

δjfj i
δmfmi

)dmf,mi

J (θ) (2.1)

Ijfmfrj imi
(θ) ) |fjfmfrj imi

(θ)|2 (2.2)

dmf,mi

J (θ) ) (-1)mf-midmi,mf

J (θ) ) (-1)mf-mid-mf,-mi

J (θ) )

d-mi,-mf

J (θ) (2.3)

dmf,mi

J (θ) ) dmf,mi

J(+) (θ) + dmf,mi

J(-) (θ) (2.4)

dmf,mi

J(() (θ) ) 1
2[dmf,mi

J (θ)-(2i
π)emf,mi

J (θ)] (2.5)

emf,mi

J (θ) ) eiπRNmf,mi

J [sin(θ/2)]R[cos(θ/2)]âQJ-mf

(R,â)(cosθ),

R ) mf - mi, â ) mf + mi (2.6)

Nmf,mi

J ) [(J + mf)!(J - mf)!

(J + mi)!(J - mi)!]
1/2

dmf,mi

J (θ) ∼ [ 2

π(J + 1
2)sin θ]1/2

cos[(J + 1
2)θ + 1

2
π(mi - mf) - 1

4
π] (2.7)

emf,mi

J (θ) ∼ - [ π

2(J + 1
2)sin θ]1/2

sin[(J + 1
2)θ + 1

2
π(mi - mf) - 1

4
π] (2.8)

dmf,mi

J(() (θ) ∼ [ 1

2π(J + 1
2)sin θ]1/2

exp{(i[(J + 1
2)θ + 1

2
π(mi - mf) - 1

4
π]} (2.9)
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Substituting eq 2.4 into the PWS (eq 2.1) enables us to
separate the scattering amplitude into N and F subamplitudes

where the two subamplitudes are given by the coherent partial
wave sums

Using the asymptotic approximations (eq 2.9), we can see that
N scattering is represented byfjfmfrj imi

(-) (θ) and F scattering by
fjfmfrj imi

(+) (θ). The corresponding state-to-state N and F dif-
ferential cross sections are given by

Structure in the full differential cross section

can arise from the N subamplitude, or from the F subamplitude,
or from interference between the N and F subamplitudes. This
NF interpretation of the angular scattering is analogous to that
used to explain the diffraction pattern in the well-known two-
slit experiment.16 Typically, N scattering samples mainly the
repulsive core of the intermolecular potential, while F scattering
samples mainly the longer-range attractive parts of the potential.

The NF theory presented above is an example of an
unrestrictedNF decomposition.17 RestrictedNF decompositions,
which take into account the caustics associated withdmf,mi

J (θ)
and emf,mi

J (θ), are developed in refs 20, 24, and 25. However,
these more sophisticated NF theories will not be needed in the
present paper.

In the HF+ Ar applications discussed in section 5, we always
havemi ) 0. For this special case, the following identities are
valid25

and

where PJ
mf(cos θ) and QJ

mf(cos θ) are Ferrers' associated
Legendre functions of the first and second kinds (of degreeJ
and ordermf), respectively,30 i.e.,

In eq 2.15,PJ(cosθ) is a Legendre polynomial of degreeJ and
QJ(cosθ) is a Legendre function of the second kind of degree
J. Equations 2.13 and 2.14 show that the NF theory can be
developed in terms of associated Legendre functions whenmi

) 0, rather than reduced rotation matrix elements.20

Whenmf ) 0 andmi ) 0, we have the further simplifications

and

so the NF theory reduces to that for a Legendre PWS in this
case.14-18,22,23

The low J terms in the PWS (eq 2.1) are usually the least
semiclassical like. When they are numerically significant, their
presence can lead to the failure of the NF method to provide a
physically meaningful interpretation of structure in a differential
cross section, e.g., bothIjfmfrj imi

(+) (θ) andIjfmfrj imi

(-) (θ) may be very
much larger thanI

jfmfrj imi
(θ) over a range ofθ. In this situation,

a resummation22,23of the PWS (eq 2.1), before making the NF
decomposition, may provide the sought physical insight. This
is discussed in the next section.

3. Resummation of Partial Wave Series

This section shows how to resum the PWS (eq 2.1). We then
apply the NF decomposition of section 2 to the resummed PWS.
As before, we assumeJ g mf g |mi|, so thatJmin ) mf. We
start by writing the PWS (eq 2.1) in the more compact form

where

Next we multiply both sides of eq 3.1 by the factorR + â(cos
θ) * 0 whereR, â are constants. In general,R, â can be complex
valued, although in all our applications in section 5, theR, â
are real. This results in

A recurrence relation obeyed by the reduced rotation matrix
elements is25,31

where

It is important to emphasize for the following derivation that
the recurrence (eq 3.4) is valid forJ ) mf as well as forJ ) mf

+ 1, mf +2, ... (this statement is proved in the Appendix). When
J ) mf, note thatdmf,mi

J-1 (θ) is nonphysical and we setdmf,mi

mf-1(θ) ≡
0. Also eq 3.5 shows thatgmf,mi

mf ) 0 whenJ ) mf.

fjfmfrj imi
(θ) ) fjfmfrj imi

(+) (θ) + fjfmfrj imi

(-) (θ) (2.10)

fjfmfrj imi

(() (θ) ) (2ikj i
)-1 ∑

J ) Jmin

∞

(2J + 1)(Sjfmfrj imi

J -

δjfj i
δmfmi

)dmf,mi

J(() (θ) (2.11)

Ijfmfrj imi

(() (θ) ) |fjfmfrj imi

(() (θ)|2 (2.12)

Ijfmfrj imi
(θ) ) |fjfmfrj imi

(+) (θ) + fjfmfrj imi

(-) (θ)|2

dmf,0
J (θ) ) [(J - mf)!

(J + mf)!]
1/2

PJ
mf(cosθ) (2.13)

emf,0
J (θ) ) [(J - mf)!

(J + mf)!]
1/2

QJ
mf(cosθ) (2.14)

RJ
m(x) ) (1 - x2)m/2

dmRJ(x)

dxm
, R ) P, Q,

x ) cosθ, m ) 0, 1, 2, ...,J (2.15)

d0,0
J (θ) ) PJ(cosθ)

e0,0
J (θ) ) QJ(cosθ)

2ikj i
fjfmfrj imi

(θ) ) ∑
J)mf

∞

aJdmf,mi

J (θ) (3.1)

aJ t ajfmfrj imi

J ) (2J + 1)(Sjfmfrj imi

J - δjfj i
δmfmi

) (3.2)

2ikj i
(R + âcosθ)fjfmfrj imi

(θ) ) R ∑
J)mf

∞

aJdmf,mi

J (θ) +

â ∑
J)mf

∞

aJcosθ dmf,mi

J (θ) (3.3)

cosθ dmf,mi

J (θ) )
gmf,mi

J

J(2J + 1)
dmf,mi

J-1 (θ) +
mfmi

J(J + 1)
dmf,mi

J (θ) +

gmf,mi

J+1

(J + 1)(2J + 1)
dmf,mi

J+1 (θ), J ) mf, mf + 1, mf + 2, ... (3.4)

gmf,mi

J+p ) [(J - mf + p)(J + mf + p)(J - mi + p) ×
(J + mi + p)]1/2 p ) 0,1 (3.5)
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For the special case ofmf ) mi ) 0 andJ ) 0, a direct
substitution of these values into eq 3.4 produces the indeter-
minate forms 0/0. We can avoid this by first substitutingmf )
mi ) 0 into eq 3.4, then taking the limitJ f 0. This results in
the standard recurrence relation for Legendre polynomials
becaused0,0

J (θ) ) PJ(cos θ). The same limiting procedure
should also be applied to some of the following equations in
the special caseJ ) mf ) mi ) 0.

Substituting eq 3.4 into eq 3.3 gives

We next manipulate the first series on the right-hand side of eq
3.6, noting that its first term is zero

In a similar way, we manipulate the third series on the right-
hand side of eq 3.6

Substituting eqs 3.7 and 3.8 into eq 3.6 enables us to write for
R + âcosθ * 0

where

Equation 3.9 shows that we have, in effect, extracted the factor
(R + âcosθ)-1 from the original PWS (eq 3.1). Of course the
numerical values offjfmfrjimi(θ) are independent ofR andâ. Note
that we can setaJ ≡ ajfmfrj imi

J identically equal to zero for
nonphysical values ofJ because they are always multiplied by
terms that are zero. By analogy with eq 3.2, we can also
introduce an effective scattering matrix element,Sjfmfrj imi

J(1) (R,â),
for the resummed series (eq 3.9)

Substituting eq 2.4 into eq 3.9 gives us the NF decomposition
of the resummed series. We can write

where

Note that the N and F subamplitudes (eq 3.13) depend onR
andâ, whereas their sum (eq 3.12) does not. Inspection of eqs
2.5 and 3.13 reveals that the dependence onR and â comes
from the series

The state-to-state N and F resummed angular distributions are
given by

Special Case.As a check on the above analysis, we consider
the special casemf ) mi ) 0 andR ) 1, â ) -1. With the
help of the results

eqs 3.9 and 3.10 simplify to

where

[Nota bene, forJ ) 0, the limit J f 0 has to be taken in eq
3.10]. Equations 3.15 and 3.16 agree with eqs A.4 and A.5 of

aJ
(1)(R,â) ) â

gmf,mi

J

J(2J - 1)
aJ-1 + [R + â

mfmi

J(J + 1)]aJ +

â
gmf,mi

J+1

(J + 1)(2J + 3)
aJ+1, J ) mf, mf + 1, mf + 2, ... (3.10)

aJ
(1)(R,â) ≡ ajfmfrj imi

J(1) (R,â) )

(2 J + 1)[Sjfmfrj imi

J(1) (R,â) - δjfj i
δmfmi

] (3.11)

fjfmfrj imi
(θ) ) fjfmfrj imi

(+)(1) (R,â;θ) + fjfmfrj imi

(-)(1) (R,â;θ) (3.12)

2ikj i
fjfmfrj imi

(()(1) (R,â;θ) )

(R + âcosθ)-1∑
J)mf

∞

aJ
(1)(R,â)dmf,mi

J(() (θ) (3.13)

(R + âcosθ)-1∑
J)mf

∞

aJ
(1)(R,â)emf,mi

J (θ)

Ijfmfrj imi

(()(1) (R,â;θ) ) |fjfmfrj imi

(()(1) (R,â;θ)|2 (3.14)

g0,0
J ) J2, g0,0

J+1 ) (J + 1)2, d0,0
J (θ) ) PJ(cosθ)

2ikj i
fjf0rj i0

(θ) ) (1 - cosθ)-1∑
J)0

∞

aJ
(1)(1,-1)PJ(cosθ) (3.15)

aJ
(1)(1,-1) ) - J

2J - 1
aJ-1 + aJ -

(J + 1)
2J + 3

aJ+1,

J ) 0, 1, 2, ... (3.16)

2ikj i
(R + âcosθ)fjfmfrj imi

(θ) ) â ∑
J)mf

∞ gmf,mi

J

J(2J + 1)
aJdmf,mi

J-1 (θ) +

∑
J)mf

∞ [R + â
mfmi

J(J + 1)]aJdmf,mi

J (θ) +

â ∑
J)mf

∞ gmf,mi

J+1

(J + 1)(2J + 1)
aJdmf,mi

J+1 (θ) (3.6)

â ∑
J)mf

∞ gmf,mi

J

J(2J + 1)
aJdmf,mi

J-1 (θ)

) â ∑
J)mf+1

∞ gmf,mi

J

J(2J + 1)
aJdmf,mi

J-1 (θ),

sincegmf,mi

J dmf,mi

J-1 (θ) ) 0 for J ) mf

) â ∑
J)mf

∞ gmf,mi

J+1

(J + 1)(2J + 3)
aJ+1dmf,mi

J (θ),

after replacingJ - 1 byJ′ andJ′ f J (3.7)

â ∑
J)mf

∞ gmf,mi

J+1

(J + 1)(2J + 1)
aJdmf,mi

J+1 (θ)

) â ∑
J)mf-1

∞ gmf,mi

J+1

(J + 1)(2J + 1)
aJdmf,mi

J+1 (θ),

sincegmf,mi

J+1 dmf,mi

J+1 (θ) ) 0 for J ) mf - 1

) â ∑
J)mf

∞ gmf,mi

J

J(2J - 1)
aJ-1dmf,mi

J (θ),

after replacingJ + 1 byJ′ andJ′ f J (3.8)

2ikj i
fjfmfrj imi

(θ) ) (R + âcosθ)-1∑
J)mf

∞

aJ
(1)(R,â)dmf,mi

J (θ) (3.9)
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ref 23, i.e., the present formalism contains as a special case the
resummation method of Yennie et al.32 for a Legendre PWS.

4. Calculations
This section describes the potential energy function used for

the Ar-HF collision system and the coupled-channel (CC)
computations of the angular scattering.

(a) Intermolecular Potential Energy Function. We used
the Hutson H6(4,3,2) potential function6 to describe the interac-
tion of Ar with HF(V ) 0), whereV is the vibrational quantum
number. This potential, which has 22 adjustable parameters, has
been deduced from high-resolution microwave, far-infrared and
infrared spectroscopic data. Subsequently, it has been found to
perform well5,7-9 for rotationally inelastic collisions, which
sample the repulsive wall of the potential. The H6 potential
has a well depth of 220.2 cm-1 in the collinear Ar-HF
configuration and a secondary minimum at the collinear Ar-
FH geometry of depth 107.5 cm-1. A FORTRAN 77 version
of the H6 potential was kindly supplied to us by Professor J.
M. Hutson.

(b) Scattering Calculations.The CC scattering computations
were carried out using the computer code MOLSCAT (version
14).33 HF was assumed to be a rigid rotator with a bond distance
of r0 ) 0.09326 nm and a rotational constant ofB0 ) 20.25
cm-1. The reduced mass of Ar-HF is µ ) 13.33 u.We
performed calculations at eight energies,E, measured relative
to the ground rotational state of HF, corresponding to the
wavenumbersE/hc ) 350(100)950 and 1089 cm-1. (The
notation w) x(y)z means increment w in steps of y starting
from w ) x and finishing at w) z.) This enabled us to examine
trends in the scattering results as a function ofE. The lowest
wavenumber,E/hc) 350 cm-1, is that used in the dopplerimetry
experiment of Chapman et al.,5 while E/hc ) 1089 cm-1

corresponds to the energy of the Rawluk et al.4 differential cross
section measurements.

The basis set comprised rotational states of HF(j), with j )
0, 1, 2, ...,jmax, wherejmax ) 9 at the lowestE and jmax ) 11
at the highest E. These values correspond to four open and six
closed states atE/hc) 350 cm-1 and seven open and five closed
states atE/hc ) 1089 cm-1. The CC calculations were
performed fromJ ) 0 to Jmax with ∆J ) 1 whereJmax ) 187
at the lowestE and Jmax ) 416 at the highestE, i.e., J )
0(1)Jmax. The diabatic modified log derivative method of
Manolopoulos34 was used to solve the coupled differential
equations.

The scattering matrix elements produced by MOLSCAT are
in a space-fixed (SF) reference frame, being labeled byJ,j i,jf
and by l i, lf, the initial and final orbital angular momentum
quantum numbers, respectively. The helicitySmatrix elements
are obtained from the SF ones using20,27,28

where〈j1m1, j2m2|jm〉 is a Clebsch-Gordon coefficient withm
) m1 + m2. Note in eq 4.1,mi lies in the range-min(j i, J) to
+min(j i, J) and similarly formf.

From Sjfmfrj imi

J , the CC, NF, and resummed NF state-to-state
differential cross sections were calculated as described in
sections 2 and 3. In addition, we also computed degeneracy-
averaged cross sections e.g., for the CC case

and similarly for the N and F angular distributions.

For the special casemf ) mi ) 0, theJ ) 0 partial wave is
problematic for the NF analysis becaused0,0

0 (θ) ) P0(cosθ) )
1 is independent ofθ, whereas thed0,0

0(()(θ) are θ dependent.
Following earlier work,17,20,25we omitted theJ ) 0 partial wave
from eqs 2.11 and 3.13 whenmf ) mi ) 0.

5. Results and Discussion

5.1. Introduction. This section presents our results for the
NF and full PWS angular distributions. Since the aim of the
NF method is to provide physical insight into the origin of
structure in differential cross sections, we will display our NF
and PWS cross sections graphically. We do not show angular
distributions at all eight collision energies; rather, we have
selected results which illustrate the main trends and which are
relevant to the experiments.4,5

As discussed in refs 17, 22, and 23 for Legendre PWS, the
NF decomposition (eq 2.4) is not uniquesthere are an infinity
of possible decompositions. Thus, there is no guarantee that
the subamplitudes (eq 2.11) will provide useful results in the
sense of being physically meaningful, even though by construc-
tion, the NF decomposition is exact. An example of a useful
NF decomposition is whenIjfmfrj imi

(+) (θ) and/or Ijfmfrj imi

(-) (θ) con-
tain less (or comparable) structure than doesI

jfmfrj imi
(θ). In

addition, the magnitudes of the NF angular distributions should
be similar (or smaller) than the magnitude ofIjfmfrj imi(θ).
Conversely, a NF decomposition is not useful when the NF
angular distributions are more structured than isIjfmfrj imi(θ).
Again, a NF decomposition is not useful whenIjfmfrj imi

(() (θ) .
Ijfmfrj imi(θ). Examples of successful and (occasionally) unsuc-
cessful NF analyses will be seen in the graphs presented below.

5.2. Nearside-Farside Results.Figure 1 shows the PWS
and NF differential cross sections atE/hc) 350, 750, and 1089
cm-1 for the rotationally elastic transition (0, 0)f (0, 0), where
we will label the transitions (j i, mi) f (jf, mf) from now on. At
E/hc ) 350 cm-1, we can see in the PWS cross section forθ
j 90° a characteristic rainbow scattering pattern plus high-
frequency oscillations. The F angular distribution possesses a
broad Airy-like oscillation with a maximum atθ ≈ 30° and a
supernumerary rainbow at smallerθ. This F scattering arises
from the attractive part of the potential. In contrast forθ J
90°, the N cross section dominates the angular distribution,
which arises from scattering by the repulsive core of the
potential. Figure 1 also clearly shows that the high frequency
(diffraction) oscillations forθ j 90° are the result of interference
between the N and F subamplitudes. Indeed a simple NF model16

gives for the oscillation period

whereR is the radius of the potential core. A fit to the Hutson
potential atE/hc ) 350 cm-1 yields R ≈ 0.3 nm, and eq 5.1
then gives∆θ ≈ 0.063 rad≈ 3.6°, in agreement with Figure 1.
Evidently the (0, 0)f (0, 0) angular scattering atE/hc ) 350
cm-1 is analogous to that for rainbow scattering from a
spherically symmetric potential (see section VIC of ref 17 for
a detailed NF analysis of this case).

As E/hc increases through 750 to 1089 cm-1, Figure 1 shows
that the F cross section loses its rainbow oscillation and becomes
monotonic. At the same time, the N angular distribution acquires
a broad maximum, which is located atθ ≈ 60° for E/hc) 1089
cm-1. For this wavenumber, Figure 1 shows that the N and F
angular distributions cross atθ ≈ 20° and the corresponding
subamplitudes interfere to produce high-frequency oscillations
in the PWS differential cross section. Equation 5.1 gives for

Sjfmfrj imi

J ) ∑
lf ) |J-jf|

J+jf

∑
l i ) |J-j i|

J+j i

i l i-lf〈j fmf, J - mf|lf0〉Sjflfrjil i

J

〈j imi, J - mi|l i0〉 (4.1)

Ijfrj i
(θ) ) (2j i + 1)-1 ∑

mf)-jf

jf

∑
mi)-j i

j i

Ijfmfrj imi
(θ) (4.2)

∆θ ≈ π/kj i
R (5.1)
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the period∆θ ≈ 0.036 rad≈ 2.0° in agreement with Figure 1.
If these high-frequency oscillations are averaged over, there
results a broad shoulder in the angular scattering fromθ ≈ 20°-
90°. The NF analysis shows this shoulder receives contributions
from both the N and F subamplitudes atθ ≈ 20°, becoming N
dominated asθ increases. This NF analysis is consistent with
the conclusion of refs 7-9, that the shoulder corresponds to
collisions sampling both the repulsive and attractive parts of
the potential. The shoulder has been observed in the molecular
beam experiments of Rawluk et al.,4 which however include a
contribution from HF(j i ) 1).

Figures 2-4 show the PWS and NF angular distributions for
the (0, 0)f (1, 0) and (0, 0)f (1, 1) transitions, as well as for
the degeneracy averagedj i ) 0 f jf ) 1 transition atE/hc )
1089, 750, and 350 cm-1, respectively. Note that the cross
sections for the (0, 0)f (1, -1) transition are equal to those
for the (0, 0)f (1, 1) transition because of the identity20

(and similarly for the NF angular distributions). The most
striking features are the minima in the (0, 0)f (1, 0) and the
(0, 0)f (1, 1) cross sections atθ ≈ 60° for E/hc ) 1089 cm-1

which move toθ ≈ 120° for E/hc) 350 cm-1. The same feature
is also evident in the degeneracy averaged angular distributions.
Figures 2-4 show that the minima are N dominated, i.e., the

scattering occurs mainly from the repulsive core of the potential.
This is consistent with the two-state semiclassical model of refs
8 and 9, which identifies a minimum in the opacity function
and a trajectory deflected by the repulsive part of the potential
(but accumulating net zero action), as important for interpreting
the minimum inI1r0(θ) at E/hc ) 1089 cm-1.

For θ smaller than the minima, Figures 2-4, exhibit
(distorted) potential rainbow scattering and diffraction oscilla-
tions similar to that already discussed for the (0, 0)f (0, 0)
transition in Figure 1. Atθ ) 0° and 180° we have

which follows from the identities

[ref 29, pp 58, 59, eqs. 4.1.17, 4.1.23, and 4.2.1]. In contrast,
the dmf,0

(() (θ) diverge asθ f 0, π. This behavior can be seen
most clearly for the (0, 0)f (1, 1) transition in Figures 2-4
for the angular rangeθ ≈ 170°-180°. It provides an example
of the NF decomposition failing to provide a physically useful
interpretation of the scattering becauseI11r00

(() (θ) . I11r00(θ) in
this angular range. The divergence of the N and F cross sections
can be removed by using a restricted NF decomposition20,25

rather than the present unrestricted NF theory. However, since
the angular regions in Figures 2-4 are small where the
unrestricted theory fails, we have not used the more sophisticated
restricted theory in this paper.

Figure 1. Differential cross sections,I(θ) versusθ, for the elastic (0,0)
f (0,0) transition in the Ar+ HF(j i, mi) f Ar + HF(j f, mf) collision
system atE/hc ) 350, 750, and 1089 cm-1. Solid line: angular
distribution (PWS) calculated by summation of the partial wave series
(eq 2.1). Dotted line: nearside angular distribution calculated by
summation of the partial wave series (eq 2.11). Dashed line: farside
angular distribution calculated by summation of the partial wave series
(eq 2.11).

Ijf-mfrj i0
(θ) ) Ijfmfrj i0

(θ)

Figure 2. Same as Figure 1 except forE/hc ) 1089 cm-1 and the
transitions (0,0)f (1,0), (0,0)f (1,1). Also shown isI(θ) versusθ
for the degeneracy-averaged transitionj i ) 0 f j f ) 1.

Ijfmfrj i0
(θ ) 0, π) ) 0 for mf > 0

dmf,0
J (0) ) δmf0

and dmf,0
J (π) ) (-1)Jδmf0
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Figure 5 shows PWS and NF angular distributions atE/hc )
550 cm-1 for the transitions (0, 0)f (2, mf) with mf ) 0, 1, 2
(the degeneracy averaged cross section forj i ) 0 f jf ) 2 is
also displayed). The results are generally similar to those
discussed above. Thus, the large angle scattering is N dominated
with diffraction effects at smallerθ arising from interference
between the N and F subamplitudes. We do not see the
characteristic potential rainbow structure in the F cross section
any more. Figure 6 shows that similar comments apply atE/hc
) 1089 cm-1 to the transitions (0, 0)f (3, mf) with mf ) 0, 1,
2, 3 and the degeneracy averagedj i ) 0 f jf ) 3 cross section.

All the angular distributions discussed above have been for
an atom-heteronuclear molecule collision. However, we note
that unusual minima beyond the rainbow region can also occur
for atom-homonuclear molecule collisions. For examples, see
Figures 5 and 6 of ref 35, which show degeneracy averaged
angular distributions for thej i ) 0 f jf ) 0 andj i ) 0 f jf )
2 transitions in the Ar+ N2 collision system as well as refs 20
and 25.

5.3. Nearside-Farside Results Using Resummed Partial
Wave Series.All of the NF cross sections discussed so far in
Figures 1-6 have used the unresummed NF theory of section
2. We next consider two examples that illustrate the resummed
NF theory developed in section 3.

Figure 7 (top part) shows PWS and NF angular distributions
in the rangeθ ) 0°-60° for the (0, 0)f (2, 0) transition at
E/hc ) 450 cm-1. The diffraction oscillations in the PWS cross
section with period∆θ ≈ 3° are clearly visible. The N and F
cross sections exhibit a simpler structure than does the PWS
angular distribution, which provides a physically meaningful

explanation of the high-frequency oscillations as a NF interfer-
ence effect. Nevertheless the N cross section, and to a lesser
extent the F cross section, also possess small oscillations with
a period of ∆θ ≈ 6°. This raises the question: Are these
oscillations an artefact of the NF decomposition (eq 2.10) or
are they physically meaningful, as is the case for the Airy-like
undulations in the elastic F cross section of Figure 1 atE/hc )
350 cm-1?

In refs 22 and 23, Hollifield and one of us applied the
resummation method of Yennie et al.32 to a Legendre PWS,
which was then followed by a NF decomposition. (Nota bene:
in the present notation, that work22,23 corresponds toR ) 1, â
) -1, andmf ) mi ) 0, see also ref 36). An application was
made to elastic scattering in strongly absorptive collisions. It
was demonstrated that a resummation significantly increases
the angular range over which the NF decomposition provides a
physically meaningful interpretation of interference effects in
the differential cross sections.22,23

Figure 7 (middle part) shows the N and F cross sections that
result from usingR ) 1, â ) -1 in the resummed NF
decomposition, eq 3.13 and 3.14. It can be seen that the N and
F angular distributions possess pronounced oscillations, which
increase in amplitude asθ decreases. Thus, unlike refs 22 and
23, the NF decomposition (eq 3.13) withR ) 1, â ) -1 has
not provided us with an (improved) physically meaningful
interpretation of the diffraction oscillations in Figure 7; in fact,
it is much worse than the unresummed decomposition (eq 2.10).

Figure 7 (lower part) also shows the N and F angular
distributions obtained usingR ) 1, â ) 0.9. The N and F curves
are now oscillation free and provide a clearer physical inter-

Figure 3. Same as Figure 1 except forE/hc ) 750 cm-1 and the
transitions (0,0)f (1,0), (0,0)f (1,1). Also shown isI(θ) versusθ
for the degeneracy-averaged transitionj i ) 0 f j f ) 1.

Figure 4. Same as Figure 1 except forE/hc ) 350 cm-1 and the
transitions (0,0)f (1,0), (0,0)f (1,1). Also shown isI(θ) versusθ
for the degeneracy-averaged transitionj i ) 0 f j f ) 1.
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pretation of the diffraction oscillations than does the unre-
summed NF analysis. To understand the results in Figure 7,
we show in Figure 8 forE/hc ) 450 cm-1 graphs of the
following quantities versusJ

whereSjfmfrj imi

J andSjfmfrj imi

J(1) (R,â) are given by eqs 2.1 and 3.11,
respectively. Figure 8 (middle and lower parts) shows that the
values of S20r00

J(1) (R,â) for R ) 1, â ) -1 at small J are
enhanced relative toS20r00

J but diminished forR ) 1, â ) 0.9.
In particular, whenR ) 1, â ) 0.9, the effect of the resummation
has been to move the largest contributions in the sum (eq 3.13)
to higher values ofJ. As discussed in refs 22 and 23 for
Legendre PWS, this effect favors a physically meaningful NF
analysis of structure in a differential cross section, because the
dmf,mi

J(() (θ) become travelling angular waves whenJ . 1, see eq
2.9.

Next we discuss the problem of how to choose values forR
and â so that physically meaningful NF decompositions are
produced. Comparing eq 3.9 with eq 3.1 shows that we have
extracted a factor (R + âcosθ)-1 from the original PWS (3.1).
For R ) 1, â ) -1, the factor (1- cosθ)-1 has a large peak
in the forward direction with a second-order pole atθ ) 0°.
However,I20r00(θ) does not have a large peak in the forward
direction, rather there is more scattering intoθ > 90° than into
θ < 90°. WhenR ) 1, â ) 0.9 on the other hand, the factor (1
+ 0.9cosθ)-1 rises gently to a maximum atθ ) 180°. In both
cases, the sums in eq 3.9 have to compensate for the behavior

Figure 5. Same as Figure 1 except forE/hc ) 550 cm-1 and the
transitions (0,0)f (2,0), (0,0)f (2,1), (0,0)f (2,2). Also shown is
I(θ) versusθ for the degeneracy-averaged transitionj i ) 0 f j f ) 2.

ReS20r00
J , Im S20r00

J

ReS20r00
J(1) (1, -1), Im S20r00

J(1) (1, -1)

ReS20r00
J(1) (1,0.9), ImS20r00

J(1) (1,0.9)

Figure 6. Same as Figure 1 except forE/hc ) 1089 cm-1 and the
transitions (0,0)f (3,0), (0,0)f (3,1), (0,0)f (3,2), (0,0)f (3,3).
Also shown isI(θ) versusθ for the degeneracy-averaged transitionj i
) 0 f j f ) 3.
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of (R + âcosθ)-1. Evidently when (R + âcosθ)-1 approximates
the shape ofI20r00(θ), the sums in eqs 3.9 and 3.13 are better
behaved in producing physically meaningful NF decompositions.

Figure 9 (upper panel) shows PWS and NF angular distribu-
tions in the rangeθ ) 0° - 60° for the (0, 0)f (3, 0) transition
at E/hc ) 650 cm-1. Both the N and F cross sections possess
oscillations with a period of∆θ ≈ 5.5°. In contrast to Figure 7,
the F oscillations are the more pronounced. UsingR ) 1, â )
-1 in the resummed series (3.13) yields N and F cross sections
in Figure 9 (middle panel) that are much larger thanI30r00(θ)
asθ decreases. In addition, the N angular distribution possesses
large oscillations. EvidentlyR ) 1, â ) -1 has failed once
again to provide a physically meaningful interpretation of the
high-frequency oscillations inI30r00(θ). In contrast, Figure 9
(lower panel) shows thatR ) 1, â ) 0.9 produces oscillation-
free and physically meaningful N and F cross sections.

Figure 10 displays plots of the real and imaginary part of
S30r00

J andS30r00
J(1) (R,â) versusJ. The trends are similar to those

in Figure 8. Thus, the lower partial waves have been enhanced
relative toS30r00

J for R ) 1, â ) -1 but diminished forR ) 1,
â ) 0.9.

Our discussion of the results in Figures 7-10, together with
those in refs 22 and 23 for resummed Legendre PWS, suggests
the following rule of thumb for choosing values ofR and â
that produce physically meaningful N and F cross sections:
ChooseValues ofR andâ so that (R + âcosθ)-1 approximately

Figure 8. Effect of resummation on the scattering matrix elements
for E/hc ) 450 cm-1 and the transition (0,0)f (2,0). Upper part: Re
S20r00

J versusJ (left) and ImS20r00
J versusJ (right). Middle part: Re

S20r00
J(1) (R,â) versusJ (left) and ImS20r00

J(1) (R,â) versusJ (right) for R )
1, â ) -1. Lower part: ReS20r00

J(1) (R,â) versus J (left) and Im
S20r00

J(1) (R,â) versusJ (right) for R ) 1, â ) 0.9.

Figure 9. Same as Figure 7 except forI(θ) versusθ, E/hc ) 650
cm-1 and the transition (0,0)f (3,0).

Figure 7. Angular distributions,I(θ) sin θ versusθ, for E/hc ) 450
cm-1 and the transition (0,0)f (2,0) showing the effect of no
resummation, resummation usingR ) 1, â ) -1 and resummation
usingR ) 1, â ) 0.9. Solid line: angular distribution (PWS) calculated
by summation of the partial waves series (eq 2.1) [or resummed partial
wave series (eq 3.9)]. Dotted line: nearside angular distribution
calculated by summation of the resummed partial wave series (eq 3.13).
Dashed line: farside angular distribution calculated by summation of
the resummed partial wave series (eq 3.13).
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mimics the shape of Ijfmfrjimi(θ) in order to obtain physically
meaningful N and F cross sections.

A more precise method to determine values forR andâ would
be to fit (R + âcosθ)-1 to Ijfmfrj imi(θ) by, e.g., least squares. In
addition, the resummation theory of section 3 could be general-
ized by extracting the more general factor (R + âcosθ + γcos2

θ + ...)-1 from the PWS and seeing if there are an optimal
number of terms that yields the best possible NF decomposition.

6. Conclusions

We have carried out accurate coupled-channel quantum
calculations of PWS and unrestricted NF differential cross
sections for the rotationally inelastic Ar+ HF collision system.
Our calculations have complemented earlier theoretical work
and are also relevant to the experiments of Vohralik et al.,3

Rawluk et al.,4 and Chapman et al.5 The results we presented
represent the first application of NF theory to an atom-
heteronuclear molecule inelastic collision. We found that the
NF decomposition of the scattering amplitude provides a clear
physical interpretation of the angular scattering, except some-
times for θ ≈ 0°, 180°. We also demonstrated that a resum-
mation of the PWS can improve the usefulness of the NF
technique when the N and F cross sections possess small
oscillations. The resummation procedure exploits recurrence
properties of reduced rotation matrix elements to extract the
factor (R + âcosθ)-1 from the PWS. We proposed a rule of
thumb for choosingR and â so as to produce physically
meaningful NF decompositions.
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Appendix

In section 3, we used properties of thedmf,mi

J (θ) whereJ g mf

g |mi|. In particular, we exploited the following recurrence
relation to resum the PWS (eq 3.1)

where

The recurrence (eq A.1) connects terms inJ - 1, J, J + 1 and
is valid for J ) mf + 1, mf + 2, ... . The purpose of this
Appendix is to show that eq A.1 is also valid forJ ) mf.

First we note thatdmf,mi

J-1 (θ) is nonphysical forJ ) mf; we can
set it identically to zero, i.e.,dmf,mi

mf-1(θ) ≡ 0. In addition, eq A.2
shows thatgmf,mi

mf ) 0. Thus, forJ ) mf, the right-hand side of
eq A.1 becomes

The second step is to verify that expression A.3 is equal to the
left-hand side of eq A.1 forJ ) mf, i.e., equal todmf,mi

mf+1(θ). To
do this, we obtain explicit formulas fordmf,mi

mf (θ) and dmf,mi

mf+1(θ)
by relating dmf,mi

J (θ) to a Jacobi polynomialPn
(R,â)(cos θ) of

degreen with parametersR andâ. From ref 29, p 58, eq 4.1.23,
the required relation is

where

Now J ) mf andJ ) mf + 1 correspond ton ) 0 andn ) 1,
respectively. Since

and

we obtain from eq A.4 the following results

Figure 10. Same as Figure 8 except forE/hc ) 650 cm-1 and the
transition (0,0)f (3,0).

dmf,mi

J+1 (θ) )
(J + 1)(2J + 1)

gmf,mi

J+1 [cosθ -
mfmi

J(J + 1)]dmf,mi

J (θ) -

(J + 1)
J

gmf,mi

J

gmf,mi

J+1
dmf,mi

J-1 (θ) (A.1)

gmf,mi

J+p ) [(J - mf + p)(J + mf + p)(J - mi + p) ×
(J + mi + p)]1/2 p ) 0,1 (A.2)

(mf + 1)(2mf + 1)

gmf,mi

mf+1 [cosθ -
mi

mf + 1]dmf,mi

mf (θ) (A.3)

dmf,mi

J (θ) ) Nmf,mi

J [sin(θ/2)]R[cos(θ/2)]âPJ-mf

(R,â)(cosθ)

R ) mf - mi, â ) mf + mi (A.4)

Nmf,mi

J ) [(J + mf)!(J - mf)!

(J + mi)!(J - mi)!]
1/2

P0
(R,â)(cosθ) ) 1

P1
(R,â)(cosθ) ) 1

2
[(R + â + 2) cosθ + R - â]

dmf,mi

mf (θ) )

[ (2mf)!

(mf + mi)!(mf - mi)!]
1/2[sin(θ2)]mf-mi[cos(θ2)]mf+mi
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and

Using these formulas, it can be verified that expression A.3 is
equal todmf,mi

mf+1(θ), i.e., eq A.1, is valid forJ ) mf as well as for
J ) mf + 1, mf + 2, .... For the special casemf ) mi ) 0 ,we
haved0,0

J (θ) ) PJ(cosθ) and eq A.1 forJ f 0 reduces toP1-
(cosθ) ) (cosθ)P0(cosθ) ) cosθ, a well-known result.
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dmf,mi

mf+1(θ) ) [ (2mf + 1)!

(mf + mi + 1)!(mf - mi + 1)!]1/2

[(mf + 1) cosθ - mi][sin(θ2)]mf-mi[cos(θ2)]mf+mi
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