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Nearside—Farside Analysis of Differential Cross Sections: Ar+ HF Rotationally Inelastic
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We report accurate coupled-channel quantum calculations of state-to-state and degeneracy-averaged differential
cross sections for the rotationally inelastic collision-AHF(y; = 0, ji = 0, my = 0) — Ar + HF(» = 0, jy,

m), whereuw;, ji, m andw, jr, me are initial and final vibrational, rotational, and helicity quantum numbers,
respectively. The calculations have been performed at eight collision energies and assume that HF is a rigid
rotator. Structure in the differential cross sections is analyzed using the unrestricted version of fearside
farside (NF) theory. The NF theory decomposes the partial wave series (PWS) for the helicity scattering
amplitude into two subamplitudes, one N, the other F. This is the first application of NF theory to an atom-
heteronuclear molecule inelastic collision. It is demonstrated that the NF technique provides a clear physical
interpretation of the angular scattering, except sometimes for scattering afgisse to 0 and 180. It is

also shown that a resummation of the PWS can improve the usefulness of the NF technique, when the N and
F cross sections possess small oscillations. The resummation procedure exploits recurrence properties of reduced
rotation matrix elements to extract a facter ¢ Scos0)~* from the PWS, wherex and 3 are constants.

Criteria for choosingx and so as to obtain a physically meaningful NF decomposition are discussed.

1. Introduction This paper makes three contributions to understanding the
dynamics of the HF+ Ar collision system:

(1) We report accurate quantum coupled-channel (CC)
scattering calculations of state-to-state and degeneracy averaged
angular distributions using the Hutson potential assuming that
HF is a rigid rotator. These calculations, which extend earlier
work,>7"9 have been performed at eight collision energies, with
the lowest one being that used in the dopplerimetry experiment
of Chapman et aP,while the highest one is that employed in
the crossed molecular beam experiment of Rawluk ét al.

(2) We carry oumnearside-farside (NF) analyses of the CC
angular distributions obtained in (1). This is the first application
of NF theory#~25 to the differential cross sections of hetero-
nuclear-molecule atom collisions.

Itis well-known that CC computations have the disadvantage
that it is difficult (and often impossible) to understand the
physical origin of structure in the angular scatterfAdhis is
Ar +HF(y, = 0,j;=0,m = 0)— because many numerically significant terms contribute to the

Ar + HF (v = 0, j;, m) (1.1) partial wave series (PWS) representation of the scattering
amplitude. Recently, however, it has been shown that the NF
method*~25 provides a relatively simple way to extract (partial)
physical information from a CC computation of the PWS.

In a NF analysis, the PWS scattering amplitude is decomposed
into two subamplitudes. These are the N subamplitude, which
is associated with semiclassical trajectories scattered from the
nearside of the target, and the F subamplitude, which is
associated with semiclassical trajectories scattered from the

work has shown that the degeneracy-averaged differential crossfarSide of the target. Stru_cture in an angular distribut.ion can
sections for HF+ Ar exhibit interesting structures, which arise from the N subamplitude, or from the F subamplitude or

depend on the balance between the attractive and repulsivd’®™m interference between the N and F subamplitudes. It is
anisotropies in the intermolecular potential. important to note that the inputs to a NF analysis are the same

CC scattering matrix elements that are used to sum the PWS
t Part of the special issue “William H. Miller Festschrift" for the full scatterlng amplltyde. Also sermclassu;al techniques,
*Present address: Micromass UK Ltd., Floats Rd., Wythenshaw, SUch as saddle point or stationary phase integration are not used,
Manchester M23 9LZ, United Kingdom. although the semiclassical picture is still evident.
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The scattering of HF by Ar is an important example of
rotational energy transfer for the collision of a heteronuclear
diatomic molecule with an atom. State-to-state integral cross
sections (for vibrationally excited HF) have been measured by
Barnes et al};2 while experimental angular distributions have
been reported by Vohralik et @& Rawluk et al# and Chapman
et al® for the vibrational ground state of HF. There have also
been many spectroscopic studies of the ArHF van der Waals
complex. Hutsofhihas used the spectroscopic data to construct
an intermolecular potential energy function that has performed
well in reproducing§’° the scattering measurements (see also
refs 10-13).

The purpose of this paper is to report a theoretical investiga-
tion of the angular scattering for the collision

where v, ji, m and v, j;, M are vibrational, rotational, and
helicity quantum numbers for the initial and final states,
respectively. The helicitiesn, my are the quantum numbers
associated with the projection of the HF rotational angular
momentum onto the relative velocity vector. Our calculations
have been stimulated by pevious theoretical research, in
particular that of Rawluk et dl.and of Barrett et &° Their
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(3) We applyresummatiortechnique®23 to the PWS for sum of twotravelling angular functiongfor 6 = 0, x)
the scattering amplitude. In particular, we show that a resum-
mation of the PWS followed by a NF decomposition provides Ay m(6) = A (6) + dit () (2.4)
a clear physical interpretation of the angular scattering for those ' ’ '
cases where the N and F cross sections for the unresummed,o s
PWS possess unphysical oscillations. The resummation exploits
recurrence properties of reduced rotation matrix elements. RIER R | O 2i\ 5

In all three applications just described, the initial and final dm,m(e) - Eldmfm(g):F(;) m(@)] (2.5)
vibrational quantum numbers for HF are kept fixedvat= vy
= 0. The labels;, v will therefore be omitted from now on, to  |n eq 2.5,e’. . () is areduced rotation matrix element of the
keep the notation as simple as possible. The NF theory for second kindlt is defined by5
collision (eq 1.1) is presented in section 2, while section 3
describes the resummation of the PWS. The intermolecular & — amopngd i a BO(ep)
potential and CC computations are outlined in section 4. Our Enm(0) Niym[SIn(6/2)I"[cos@/2) Q;-m(c0SO).
CC and NF results for the angular scattering are presented and a=m-—m, f=m+m (2.6)
discussed in section 5. Section 6 contains our conclusions.

WhereQﬁf"ﬁ)(cos 0) is a Jacobi function of the second kind of

2. Nearside-Farside Analysis degree n with parametexs and 8 defined “on the cut —1 <

Nearside-farside theory has been used to analyze the cosd < 1. The normalization factor in eq 2.6 is

differential cross sections of many different elastic and inelastic 3+ m)id — m)!]ee

collision systemd?-20.25He + Ne, H" + Ar, Ne + D, He + = i i

N, and Ar+ N as well as the reactioks16.18.24C| + HC| — @M - m)!]

CH+Cl,F+H,—FH+H,F+HD—FH+ D (or FD +

H), and H+ D, — HD + D. This Section presents the key The properties ofe, .(6) and Q*”(cos 6) have been dis-

equation¥’?> needed to carry out a NF analysis for the cussed in detail in refs 17, 19, and 25. In particulﬁ{m(é))

differential cross section of a general state-to-state- BC obeys the same symmetry relations (eq 2.3)as,(6).

inelastic collision. In the limit of largeJ > m, m, the following asymptotic
The starting point is the PWS for the scattering amplitude, approximations are valf@?for 0 < 6 <

fiim—im(0), in the helicity representatiof: 2

J 2 172
w dmfm(G) ~ 1
I .
fam(@) = 26) Z 23+ 1S — n(J + E)s,m 0
" 1 1 1
0, Omm) i m(6) (2.1) COS{(J + 5)9 +5um —m) — 77| (2.7)
where 6 is the scattering angléy; is the translational wave-  and
number for relative motion in the initial channdljs the total
angular momentum quantum numbﬁ?{ i is a body-fixed erJn 0) ~ — 42 v2
scattering matrix elemend;;; is a Kronecker delta function and M Z(J + l')sin 0
(0) is a reduced rotation matrix element as defined by 2

1

dJ
m
Edmonds? A constant phase has been omitted when writing - n,.1 N |
sm[(J + 2)9 + r(m —m) — 37| (2.8)

down eq 2.1. The state-to-state differential cross section is given

by
It then follows from egs 2.5, 2.7, and 2.8 that
_ 2
ij"‘r‘_jin\(e) - |fjfn‘r‘_jin\(0)| (2.2) e ©) 1 1/2
Possible values famy, my in eq 2.1 are 01, +2, ..., +J with i 2;1(3 + l)sin 0
J=0,1, 2, .... The first nonzero term occurs fbr= Jynin = 2
max(ny|,/m|). It is convenient in the NF analydfe?s to use exp{ii[(\] + 1)9 + lﬂ(m —m) - lﬂ]} (2.9)
values formy, m such thaimy — m andm + my are always> 2 2 4

0, i.e., we requird = my >|my|. This can be achieved by means

of the following symmetry relations obeyed by t, ,(6) which is valid for J — « and 0 < 6 < . The term

[ref 29, p 60, eqs 4.2.5 and 4.2.6] exp{+i[(J+ %)9]} in eq 2.9 physically represents a travelling
] 4] R angular wave moving anticlockwise ind. A semi-
dmr,m(e) =(-1) dm(e) =(-1) d—mf,—m(e) = classical analysis shows that this wave typically originates from
& 6) (2.3) the farside of the target for an observer in the upper half of
M ' the scattering plane at infini8t. Conversely, the term
_ _ _ , 1,0 - :
In the following, we shall assume that this orderingnafand exp{— i[(J + 5)0]} in eq 2.9 represents a travelling angular
m; has been done. It then follows théfin = my > 0. wave moving clockwise inf, which typically originates

Our aim is to separate the scattering amplitude into two semiclassically from the nearside of the target for an observer
subamplitudes, N and F, corresponding to angular wavesin the upper half of the scattering plane at infirityThis
travelling clockwise and anticlockwise ifi respectivelyi’25 analysis lets us identify the superscript)(with F and the
This can be accomplished by decomposdﬂ,gm(e) into the superscript £) with N.
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Substituting eq 2.4 into the PWS (eq 2.1) enables us to
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Whenmy = 0 andm, = 0, we have the further simplifications

separate the scattering amplitude into N and F subamplitudes

— (1) (-)
fl'fmf‘_l-m(e) - fjf”‘f“ii"\(e) + fjfn‘r‘_iim(e) (210)

where the two subamplitudes are given by the coherent partial

wave sums

(@ = @) 5 @+ DGy~
J=Jmin

J(+)
945, Omm)dm,

H0) (211)

dy,(0) = Pj(cos)
and

& () = Q,(cosh)

so the NF theory reduces to that for a Legendre PWS in this
Case1_4—18,22,23

The low J terms in the PWS (eq 2.1) are usually the least
semiclassical like. When they are numerically significant, their
presence can lead to the failure of the NF method to provide a
physically meaningful interpretation of structure in a differential

Using the asymptotic approximations (eq 2.9), we can see thatcross section, e.g., bot :f)_jm(g) and'i(;n)r—im(g) may be very

N scattering is represented lq%ﬂm(e) and F scattering by
f—im(6). The corresponding state-to-state N and F dif-
ferential cross sections are given by

&) TES) 2
IJ‘fmr“J'.”\(e) - |fifmfej|n\(9)| (2.12)

Structure in the full differential cross section
— §(H) (=) 2
ijmr“jin\(e) o |fjfmf‘*jin\(9) + fjfmr“ji”\(e)|

can arise from the N subamplitude, or from the F subamplitude,

or from interference between the N and F subamplitudes. This
NF interpretation of the angular scattering is analogous to that

used to explain the diffraction pattern in the well-known two-
slit experiment® Typically, N scattering samples mainly the
repulsive core of the intermolecular potential, while F scattering

samples mainly the longer-range attractive parts of the potential.

The NF theory presented above is an example of an
unrestricted\NF decompositiod? RestrictedNF decompositions,
which take into account the caustics associated wgm(e)
and efm(e), are developed in refs 20, 24, and 25. However,

much larger tham . (6) over a range ob). In this situation,

a resummatio??23of the PWS (eq 2.1), before making the NF
decomposition, may provide the sought physical insight. This
is discussed in the next section.

3. Resummation of Partial Wave Series

This section shows how to resum the PWS (eq 2.1). We then
apply the NF decomposition of section 2 to the resummed PWS.
As before, we assumé& > ny > |my, so thatJmi, = m.. We
start by writing the PWS (eq 2.1) in the more compact form

00

20k £, i m (@) = ; aydy, m(6) (3.1)
=y

where
— AJ _
=8 m = (23 + 1)($1mfim — 5jfji5mr"\) (3.2)

Next we multiply both sides of eq 3.1 by the factort+ (cos
0) = 0 whereq, 8 are constants. In general, 5 can be complex
valued, although in all our applications in section 5, the3

these more sophisticated NF theories will not be needed in theare real. This results in

present paper.

In the HF+ Ar applications discussed in section 5, we always
havem = 0. For this special case, the following identities are
valid?®

(] — m)!]v2
A of6) = ﬁ PT'(cos6) (2.13)
and
[(J — m)!]v2
en o) = ﬁ T¥(cos0) (2.14)

where Pj(cos 6) and QJ'(cos 0) are Ferrers' associated
Legendre functions of the first and second kinds (of degree
and ordeny), respectively’ i.e.,

d"R,(x)
RX)=(1—d)"——, R=P,Q,
(¥ = (1 —Xx) 0" Q
x=cosf, m=0,1,2,..J (2.15)

In eq 2.15P;(cos¥) is a Legendre polynomial of degrdeand
Qs(cos0) is a Legendre function of the second kind of degree

0

2ik; (o + BCOSO)f; yyj m(6) = a; aydy, m(6) +
=

ﬁiajcose Ay m(6) (3.3)

A recurrence relation obeyed by the reduced rotation matrix
elements i¥:31

J

G 5 mm

J _ MM g1 J
cos6 dy, (0) = 32+ 1)dmfm(@) + 0+ 1)dmfm(9) +

J+1

™M J+1 _
(J + 1)(2] + 1)dm,m(0)a J Mg, M + 1, m + 2, (34)

where
Irem = [(I = M+ p)@+ m + p)d — m + p) x

(@ +m+p]*?

It is important to emphasize for the following derivation that
the recurrence (eq 3.4) is valid far= m as well as ford = nx

p=0,1 (3.5)

J. Equations 2.13 and 2.14 show that the NF theory can be +1,m +2, ... (this statement is proved in the Appendix). When

developed in terms of associated Legendre functions wen
= 0, rather than reduced rotation matrix elemefts.

J = my, note thatd, . (0) is nonphysical and we selfy +(0) =
0. Also eq 3.5 shows theg[gm = 0 whenJ = m.
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For the special case off = m = 0 andJ = 0, a direct where
substitution of these values into eq 3.4 produces the indeter- :
minate forms 0/0. We can avoid this by first substitutmg—= (1) Omm
m = 0 into eq 3.4, then taking the limix— 0. This results in aj (o) = ﬁm&h—
the standard recurrence relation for Legendre polynomials J+l( )
becausedévo(e) = Pjy(cos 0). The same limiting procedure Omm
should also be applied to some of the following equations in ﬁmaﬂr J=m,m+1m+2 .. (3.10)

the special casé@ = my = m = 0.

mm
1+[a+ﬁmaJ

Substituting eq 3.4 into eq 3.3 gives Equation 3.9 shows that we have, in effect, extracted the factor
(oo + BcosH) 1 from the original PWS (eq 3.1). Of course the
gJ numerical values dfn-—jm(0) are independent af andf. Note
J
21k, (a + BcosO)f, L) + that we can sety = &, identically equal to zero for
(+p imy-im(®) = 5; J2J + 1) 1y m(©) nonphysical values aof babase they are always multiplied by
© terms that are zero. By analogy with eq 3.2, we can also
mm
,z o+ p——|ad (0) + introduce an effective scattering matrix elemqﬂ‘tﬂlM m (@.5),
= JJ+1) m for the resummed series (eq 3.9)
o QJH (1) J(1)
e R L Ly
3,0, m &)
m (J+ 1)(21+ 1) I+ DI jm (@) = 0};0mm] (3.11)
We next manipulate the first series on the right-hand side of eq Substituting eq 2.4 into eq 3.9 gives us the NF decomposition
3.6, noting that its first term is zero of the resummed series. We can write
— f(HA) (—-)(1) .
3 fimein(® = (@) + 8 (@ pe)  (3.12)
ﬂz =(0)
£ 323+ 1) A where
) 20k f 1 (a,8:0) =
=p Ty mm(e) + 0 (1) dJ(ﬂ:) o) (3.13
141323+ 1) (o + Bcoso) Jzaa (op)dy m(6) (3.13)

sincegy, dm m(0) = 0 for J =m,
Note that the N and F subamplitudes (eq 3.13) depend. on
1 andp, whereas their sum (eq 3.12) does not. Inspection of eqs
i Om.m 2.5 and 3.13 reveals that the dependencexcemd f comes

= IBJZ ———a (0), from the series
0+ 1)(21+3) 1y
after replacingl — 1 by J andJ — J (3.7 e
I 57 (@t foost) 3 e ()
In a similar way, we manipulate the third series on the right- =

hand side of eq 3.6 The state-to-state N and F resummed angular distributions are

g”l given by

- mm OO (1)
ﬂJZ m oy (0) imm(@8:0) = ff 0 (e B:0)I° (3.14)

=y

Special CaseAs a check on the above analysis, we consider
. gJ+1 the special casex = m = 0 anda. = 1, § = —1. With the
™M help of the results

Z J+l ( ) elp

T 0+ DRI+ 1) A m

J 2 O+l J
sincegy ndi () =0ford=m — 1 0,0 0.0 b, 3

egs 3.9 and 3.10 simplify to

z a1 (0. 2K; fjo—jol6) = (1 = cos6) 3 a'(L=1)Py(cos6) (3.15)
J2J - 1) -
after replacingl + 1 by J andJ — J (3.8) where

Substituting egs 3.7 and 3.8 into eq 3.6 enables us to write for J (J + 1)
aP(1,-1)=—--"—a, ,+a
o + fcos = 0 S 2] — 11T AT 5y g 415

J=0,1,2, ... (3.16)

20K ;e (0) = (ot + ﬁcos@)_ljz asl)(a,ﬂ)dfnfm(@) (3.9) [Nota bene, forJ = 0, the limitJ — 0 has to be taken in eq
=My 3.10]. Equations 3.15 and 3.16 agree with egs A.4 and A.5 of
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ref 23, i.e., the present formalism contains as a special case the For the special casex = my = 0, theJ = 0 partial wave is

resummation method of Yennie et3lfor a Legendre PWS.

4. Calculations

This section describes the potential energy function used for

the Ar—HF collision system and the coupled-channel (CC)
computations of the angular scattering.

(a) Intermolecular Potential Energy Function. We used
the Hutson H6(4,3,2) potential functi®to describe the interac-
tion of Ar with HF(v = 0), wherew is the vibrational quantum

problematic for the NF analysis becaug%(e) = Py(cosh) =
1 is independent of, whereas thelg;)(6) are 6 dependent.
Following earlier worki7-2025we omitted the) = O partial wave
from egs 2.11 and 3.13 whary = my = 0.

5. Results and Discussion

5.1. Introduction. This section presents our results for the
NF and full PWS angular distributions. Since the aim of the

number. This potential, which has 22 adjustable parameters, hads\F method is to provide physical insight into the origin of

been deduced from high-resolution microwave, far-infrared and

structure in differential cross sections, we will display our NF

infrared spectroscopic data. Subsequently, it has been found taand PWS cross sections graphically. We do not show angular

perform welP”° for rotationally inelastic collisions, which
sample the repulsive wall of the potential. The H6 potential
has a well depth of 220.2 cmh in the collinear A-HF
configuration and a secondary minimum at the collinear Ar
FH geometry of depth 107.5 cth A FORTRAN 77 version

of the H6 potential was kindly supplied to us by Professor J.
M. Hutson.

(b) Scattering Calculations.The CC scattering computations
were carried out using the computer code MOLSCAT (version
14) 33 HF was assumed to be a rigid rotator with a bond distance
of ro = 0.09326 nm and a rotational constantBf= 20.25
cml. The reduced mass of AHF is u = 13.33 u.We
performed calculations at eight energi&s,measured relative
to the ground rotational state of HF, corresponding to the
wavenumbersE/hc = 350(100)950 and 1089 crh (The
notation w= x(y)z means increment w in steps of y starting
from w = x and finishing at w= z.) This enabled us to examine
trends in the scattering results as a functiorEofThe lowest
wavenumber/hc = 350 cnt?, is that used in the dopplerimetry
experiment of Chapman et al.while E/hc = 1089 cnt?
corresponds to the energy of the Rawluk €etdifferential cross
section measurements.

The basis set comprised rotational states ofjHith j =
0, 1, 2, ....jmax Wherejmax = 9 at the lowesE andjmax = 11

at the h|ghest E. These values correspond to four open and sixe/hc =

closed states d&/hc = 350 cnT! and seven open and five closed
states atE/hc = 1089 cmtl. The CC calculations were
performed fromJ = 0 t0 Jnax With AJ = 1 whereJmax = 187

at the lowestE and Jnax = 416 at the highesE, i.e.,J =
0(1max The diabatic modified log derivative method of
Manolopoulod* was used to solve the coupled differential
equations.

The scattering matrix elements produced by MOLSCAT are
in a space-fixed (SF) reference frame, being labeled,py
and byl;, I, the initial and final orbital angular momentum
quantum numbers, respectively. The heli@snatrix elements
are obtained from the SF ones usihg-28

It Jtijj

li—1y I milos.
Z_Jﬂ l Zhl . milly [ﬁlflf jilh

Gm, J -

where[jhmy, jonp|jmOis a Clebsch-Gordon coefficient withm
= m + mp. Note in eq 4.1m lies in the range-min(j;, J) to
+min(;, J) and similarly formn.

From , the CC, NF, and resummed NF state-to-state
differential cross sections were calculated as described in
sections 2 and 3. In addition, we also computed degeneracy-
averaged cross sections e.g., for the CC case

mﬁ m =

m|1,00(4.1)

it Ji

Jf’fJ (0) (zjl + 1)_ z Z Ilfmfﬂ m(a)

m==j m
and similarly for the N and F angular d|str|but|ons.

(4.2)

distributions at all eight collision energies; rather, we have
selected results which illustrate the main trends and which are
relevant to the experiments.

As discussed in refs 17, 22, and 23 for Legendre PWS, the
NF decomposition (eq 2.4) is not unigtthere are an infinity
of possible decompositions. Thus, there is no guarantee that
the subamplitudes (eq 2.11) will provide useful results in the
sense of being physically meaningful, even though by construc-
tion, the NF decomposition is exact. An example of a useful
NF decomposition is whetf,).; .(6) and/orl{)_; .(6) con-
tain less (or comparable) structure than dd)es (6). In

addition, the magnitudes of the NF angular distributions should
be similar (or smaller) than the magnitude Bfn-—jm(6).
Conversely, a NF decomposition is not useful when the NF
angular distributions are more structured than,fiﬁﬂ,m(e)
Again, a NF decomposition is not useful Whé 6) >
liim—im(6). Examples of successful and (occasmnally) unsuc-
cessful NF analyses will be seen in the graphs presented below.

5.2. Nearside-Farside Results.Figure 1 shows the PWS
and NF differential cross sectionskhc = 350, 750, and 1089
cm1 for the rotationally elastic transition (0, 8} (0, 0), where
we will label the transitionsj{, m) — (j;, my) from now on. At
350 cnT?, we can see in the PWS cross sectiondor
< 90° a characteristic rainbow scattering pattern plus high-
frequency oscillations. The F angular distribution possesses a
broad Airy-like oscillation with a maximum & ~ 30° and a
supernumerary rainbow at small@r This F scattering arises
from the attractive part of the potential. In contrast tbrz
90°, the N cross section dominates the angular distribution,
which arises from scattering by the repulsive core of the
potential. Figure 1 also clearly shows that the high frequency
(diffraction) oscillations fol® < 90° are the result of interference
between the N and F subamplitudes. Indeed a simple NF Afodel
gives for the oscillation period

AO ~ n/k‘-iR (5.2)
whereR is the radius of the potential core. A fit to the Hutson
potential atE/hc = 350 cnt?! yields R ~ 0.3 nm, and eq 5.1
then givesA# ~ 0.063 rad~ 3.6°, in agreement with Figure 1.
Evidently the (0, 0)— (0, 0) angular scattering &/hc = 350
cm! is analogous to that for rainbow scattering from a
spherically symmetric potential (see section VIC of ref 17 for
a detailed NF analysis of this case).

As E/hcincreases through 750 to 1089 tinFigure 1 shows
that the F cross section loses its rainbow oscillation and becomes
monotonic. At the same time, the N angular distribution acquires
a broad maximum, which is locatedé@t 60° for E/hc= 1089
cm™L. For this wavenumber, Figure 1 shows that the N and F
angular distributions cross &~ 20° and the corresponding
subamplitudes interfere to produce high-frequency oscillations
in the PWS differential cross section. Equation 5.1 gives for
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Figure 1. Differential cross section$(6) versusg, for the elastic (0,0) Figure 2. Same as Figure 1 except f&/hc = 1089 cni! and the

— (0,0) transition in the Ar- HF(j;, m) — Ar + HF(js, nx) collision transitions (0,0 (1,0), (0,0)— (1,1). Also shown id(6#) versusf

system atE/hc = 350, 750, and 1089 cmh. Solid line: angular for the degeneracy-averaged transitjorr 0 — j; = 1.

distribution (PWS) calculated by summation of the partial wave series

(eq 2.1). Dotted line: nearside angular distribution calculated by scattering occurs mainly from the repulsive core of the potential.

summation of the partial wave series (eq 2.11). Dashed line: farside rq is cqnsistent with the two-state semiclassical model of refs

angular distribution calculated by summation of the partial wave series S . s . . ;

(eq 2.11). 8 and 9, _wh|ch identifies a minimum in the opacity functlor_1
and a trajectory deflected by the repulsive part of the potential

the periodA# ~ 0.036 rad~ 2.0° in agreement with Figure 1. (but accumulating net zero action), as important for interpreting

If these high-frequency oscillations are averaged over, therethe minimum inl;—o(f) at E/hc = 1089 cm™.

results a broad shoulder in the angular scattering fleen20°— For 6 smaller than the minima, Figures—2, exhibit

90°. The NF analysis shows this shoulder receives contributions (distorted) potential rainbow scattering and diffraction oscilla-

from both the N and F subamplitudeséats 20°, becoming N tions similar to that already discussed for the (0,-6)0, 0)

dominated a® increases. This NF analysis is consistent with transition in Figure 1. A = 0° and 180 we have

the conclusion of refs 79, that the shoulder corresponds to

collisions sampling both the repulsive and attractive parts of ljm—jo0 =0,7) =0 for m >0

the potential. The shoulder has been observed in the molecular

beam experiments of Rawluk et &lwhich however include a  \yhich follows from the identities

contribution from HFj; = 1).

Figures 2-4 show the PWS and NF angular distributions for J _ J 1y

the (0, 0)— (L, 0) and (0, 0}~ (1, 1) transitions, as well as for Ui o(0) = Omo - aNd () = (—1) 9o

the degeneracy averaggd= 0 — j; = 1 transition ate/hc =

1089, 750, and 350 cm, respectively. Note that the cross [ref 29, pp 58, 59, egs. 4.1.17, 4.1.23, and 4.2.1]. In contrast,

sections for the (0, 0 (1, —1) transition are equal to those the d-(6) diverge as9 — 0, z. This behavior can be seen

for the (0, 0)— (1, 1) transition because of the identlty most clearly for the (0, 0y~ (1, 1) transition in Figures-24
for the angular rangé ~ 170°—18C°. It provides an example
i —m—i0(0) = ljm—0(0) of the NF decomposition failing to provide a physically useful

interpretation of the scattering becatlu%}ioo(e) > |11.00(0) IN
(and similarly for the NF angular distributions). The most this angular range. The divergence of the N and F cross sections
striking features are the minima in the (0,9) (1, 0) and the can be removed by using a restricted NF decompogfi&n
(0, 0)— (1, 1) cross sections &t~ 60° for E/hc = 1089 cn1? rather than the present unrestricted NF theory. However, since
which move tad ~ 12¢° for E/hc= 350 cnTl. The same feature  the angular regions in Figures—2 are small where the
is also evident in the degeneracy averaged angular distributionsunrestricted theory fails, we have not used the more sophisticated
Figures 2-4 show that the minima are N dominated, i.e., the restricted theory in this paper.
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Figure 3. Same as Figure 1 except féthc = 750 cnt! and the Figure 4. Same as Figure 1 except féhc = 350 cnt! and the
transitions (0,0 (1,0), (0,0)— (1,1). Also shown id(6) versusé transitions (0,0 (1,0), (0,0)— (1,1). Also shown id(#) versusf
for the degeneracy-averaged transitjosr 0 — j; = 1. for the degeneracy-averaged transitjosr 0 — j; = 1.
Figure 5 shows PWS and NF angular distribution&/atc = explanation of the high-frequency oscillations as a NF interfer-
550 cnt! for the transitions (0, 0y (2, ny) with m¢ =0, 1, 2 ence effect. Nevertheless the N cross section, and to a lesser
(the degeneracy averaged cross sectiofjifer0 — js = 2 is extent the F cross section, also possess small oscillations with

also displayed). The results are generally similar to those a period of A@ ~ 6°. This raises the question: Are these

discussed above. Thus, the large angle scattering is N dominateascillations an artefact of the NF decomposition (eq 2.10) or

with diffraction effects at smalleé arising from interference  are they physically meaningful, as is the case for the Airy-like

between the N and F subamplitudes. We do not see theundulations in the elastic F cross section of Figure E/At =

characteristic potential rainbow structure in the F cross section 350 cnt1?

any more. Figure 6 shows that similar comments appby/lat In refs 22 and 23, Hollifield and one of us applied the

= 1089 cn1! to the transitions (0, 0> (3, my) with mi =0, 1, resummation method of Yennie et%lto a Legendre PWS,

2, 3 and the degeneracy averaged 0 — j; = 3 cross section.  which was then followed by a NF decomposition. (Nota bene:
All the angular distributions discussed above have been for in the present notation, that w@Aé3 corresponds to. = 1, 3

an atom-heteronuclear molecule collision. However, we note = —1, andmy = m, = 0, see also ref 36). An application was

that unusual minima beyond the rainbow region can also occur made to elastic scattering in strongly absorptive collisions. It

for atom—homonuclear molecule collisions. For examples, see was demonstrated that a resummation significantly increases

Figures 5 and 6 of ref 35, which show degeneracy averagedthe angular range over which the NF decomposition provides a

angular distributions forthg = 0—jf=0andj; =0—j; = physically meaningful interpretation of interference effects in

2 transitions in the Ar- N, collision system as well as refs 20  the differential cross sectiod$23

and 25. Figure 7 (middle part) shows the N and F cross sections that
5.3. Nearside-Farside Results Using Resummed Partial result from usingo. = 1, § = —1 in the resummed NF

Wave Series All of the NF cross sections discussed so far in  decomposition, eq 3.13 and 3.14. It can be seen that the N and
Figures -6 have used the unresummed NF theory of section F angular distributions possess pronounced oscillations, which
2. We next consider two examples that illustrate the resummedincrease in amplitude asdecreases. Thus, unlike refs 22 and

NF theory developed in section 3. 23, the NF decomposition (eq 3.13) with= 1, f = —1 has
Figure 7 (top part) shows PWS and NF angular distributions not provided us with an (improved) physically meaningful
in the rangef = 0°—60° for the (0, 0)— (2, 0) transition at interpretation of the diffraction oscillations in Figure 7; in fact,
E/hc= 450 cnt. The diffraction oscillations in the PWS cross it is much worse than the unresummed decomposition (eq 2.10).
section with periodA@ ~ 3° are clearly visible. The N and F Figure 7 (lower part) also shows the N and F angular

cross sections exhibit a simpler structure than does the PWSdistributions obtained using= 1,5 = 0.9. The N and F curves
angular distribution, which provides a physically meaningful are now oscillation free and provide a clearer physical inter-
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Figure 5. Same as Figure 1 except f&’hc = 550 cnT! and the
transitions (0,0~ (2,0), (0,0)— (2,1), (0,0)— (2,2). Also shown is
1(6) versusf for the degeneracy-averaged transitjpsr 0 — j; = 2.
pretation of the diffraction oscillations than does the unre- .
summed NF analysis. To understand the results in Figure 7, 107 ¢
we show in Figure 8 forE/hc = 450 cnt! graphs of the |
following quantities versugd L S
10™ "\
Re Sy 00+ IM S0 0 60 120 180
0/°
1 1
Re (o)—oo(l, —1),Im (0)—00(1, -1) Figure 6. Same as Figure 1 except f&thc = 1089 cnt! and the
transitions (0,0) (3,0), (0,0)— (3,1), (0,0)— (3,2), (0,0)— (3,3).
ReS]Q(Oll oo(1,0.9), |mS;(01l oo(1,0.9) /ilsoo shjown 3|sl(¢9) versusf for the degeneracy-averaged transitjon
=0—j;=3.

Where%mﬁ-m Qnd%&%ﬂm(a,ﬁ) are given by egs 2.1 and 3.11,
respectively. Figure 8 (m

Next we discuss the problem of how to choose valuesxfor
values of S

iddle and lower parts) shows that the 504 g 5o that physically meaningful NF decompositions are
ap) for o =1, f = —1 at smallJ are produced. Comparing eq 3.9 with eq 3.1 shows that we have
enhanced relative t8);, o, but diminished foro = 1, 8 = 0.9. extracted a factoro( + Scos6) 1 from the original PWS (3.1).
In particular, whern. = 1, 8 = 0.9, the effect of the resummation  Foro = 1, 8 = —1, the factor (1— cosf)~! has a large peak
has been to move the largest contributions in the sum (eq 3.13)in the forward direction with a second-order polefat= 0°.
to higher values ofl. As discussed in refs 22 and 23 for However,l»—0(f) does not have a large peak in the forward
Legendre PWS, this effect favors a physically meaningful NF direction, rather there is more scattering ifte- 90° than into
analysis of structure in a differential cross section, because theg < 90°. Wheno. = 1, 8 = 0.9 on the other hand, the factor (1
dJ('in)}(H) become travelling angular waves whép> 1, see eq + 0.9cosh) 1 rises gently to a maximum &= 18C°. In both
2%. cases, the sums in eq 3.9 have to compensate for the behavior
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o} 2I5 5‘0 7I5 o} 2I5 5‘0 7‘5
J J
Figure 8. Effect of resummation on the scattering matrix elements
for E/hc = 450 cnt! and the transition (0,0)> (2,0). Upper part: Re
0/° Soo0 Versusl (left) and ImS),_, versusJ (right). Middle part: Re
(1) (1) i _
Figure 7. Angular distributions)(6) sin 6 versus6, for E/hc = 450 Solodle8) versusd (left) a.lnd Ims(%,_oo(a,ﬂ) versusl (right) for a. =
cm? and the transition (0,0~ (2,0) showing the effect of no 1ylﬁ = —1. Lower part: ReS) o(a.B) versusJ (left) and Im
resummation, resummation using= 1, § = —1 and resummation @Eﬂoo(a,ﬂ) versus] (right) fora = 1, 5 = 0.9.

usinga. =1, 8 = 0.9. Solid line: angular distribution (PWS) calculated
by summation of the partial waves series (eq 2.1) [or resummed partial
wave series (eq 3.9)]. Dotted line: nearside angular distribution
calculated by summation of the resummed partial wave series (eq 3.13).
Dashed line: farside angular distribution calculated by summation of
the resummed partial wave series (eq 3.13).

of (o + BcosH)~L. Evidently when ¢ + Scosd) 1 approximates
the shape of2p-—00(0), the sums in eqgs 3.9 and 3.13 are better
behaved in producing physically meaningful NF decompositions.

Figure 9 (upper panel) shows PWS and NF angular distribu-
tions in the rang® = 0° — 60° for the (0, 0)— (3, 0) transition
at E/hc = 650 cntl. Both the N and F cross sections possess
oscillations with a period oA@ ~ 5.5°. In contrast to Figure 7,
the F oscillations are the more pronounced. Using 1, 8 =
—1in the resummed series (3.13) yields N and F cross sections
in Figure 9 (middle panel) that are much larger thgp oo(0)
asf decreases. In addition, the N angular distribution possesses
large oscillations. Evidentlyt = 1, = —1 has failed once
again to provide a physically meaningful interpretation of the
high-frequency oscillations iihgo—00(6). In contrast, Figure 9
(lower panel) shows that = 1, 5 = 0.9 produces oscillation-
free and physically meaningful N and F cross sections.

Figure 10 displays plots of the real and imaginary part of
Sio—00 @Nd S o(at,B) versusl. The trends are similar to those
in Figure 8. Thus, the lower partial waves have been enhanced
relative t0S), o, for o = 1, 8 = —1 but diminished for. = 1,
B =0.9.

Our discussion of the results in Figures 10, together with
those in refs 22 and 23 for resummed Legendre PWS, suggests
the following rule of thumb for choosing values af and 3

10) /A% st

— PWS

- Nearside
| ---- Farside

30 60
9/°

that produce physically meaningful N and F cross sections: Figure 9. Same as Figure 7 except ftf9) versus6, E/hc = 650
Choosevalues ofo. and3 so that (. + Scos6)~t approximately cm* and the transition (0,0) (3,0).
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Effect of resummation on S matrix elements Appendix
oa Roal Part 1 | K o In section 3, we used properties of tie . (0) whereJ = mx
41 e maginary Part > |my|. In particular, we exploited the following recurrence
02 relation to resum the PWS (eq 3.1)
0.0
1 (T 121+ 1) o mm _
o2 dmfm(O) =-——7,7 |cosf 0+ dm(e)
S matrix gm,m
-0.4 gJ
(J+1)%mm 5
04 Tog A m(6) (A1)
02 m.m
00 h where
-0.2
N a1, Bt b = [(3 = m + p)@+m + p)d —m +p) x
‘ @+m+pl”*  p=01 (A2
02 . The recurrence (eq A.1) connects termdin 1,J,J + 1 and
00 is valid ford = my + 1, m¢ + 2, ... . The purpose of this
' Appendix is to show that eq A.1 is also valid fér= .
-02 | 1 First we note thati,, - () is nonphysical fod = my; we can
oal i a=1p=09 set it identically to zero, i.edﬁf,ﬁ(@) = 0. In addition, eq A.2
5 P 5 - 5 P - - shows thagﬂm = 0. Thus, forJ = ny, the right-hand side of
J J eq A.1 becomes
Figure 10. Same as Figure 8 except f&fhc = 650 cnt! and the
transition (0,0)— (3,0). +1 +1
(m )(inf )[cose __m dr¥ (0) (A.3)
_ . . , g [ m + 1| ™M
mimics the shape of—m(6) in order to obtain physically m.m

meaningful N and F cross sections. _ . _ .
A more precise method to determine valuescfi@nd would The seconq step is to verify that expression A.Smflflequal to the
be to fit (@ + Ac0SO) 1 10 ljm—im(6) by, €.9., least squares. In  1éft-hand side of eq A.1 fod = m, i.e., equal tody, (0). To

addition, the resummation theory of section 3 could be general- do this, we obtain explicit formulas faiy . (0) and diy;(6)
ized by extracting the more general factar{ fcos6 + ycog by relating dﬂm(e) to a Jacobi polynomiaP*”(cos 6) of

6 + ..)* from the PWS and seeing if there are an optimal degreenwith parameters. andfs. From ref 29, p 58, eq 4.1.23,
number of terms that yields the best possible NF decomposition. the required relation is

6. Conclusions oy i (6) = Nj, o [Sin(6/2)]*[cos0/2) PS4 (cosb)

We have carried out accurate coupled-channel quantum a=m-m, f=m+m (A.4)
calculations of PWS and unrestricted NF differential cross
sections for the rotationally inelastic Ar HF collision system.
Our calculations have complemented earlier theoretical work

where

and are also relevant to the experiments of Vohralik et al., 3+ m)I(J — m)1]2
Rawluk et al4 and Chapman et &lThe results we presented anrm = | |
represent the first application of NF theory to an atom @+ md—m)

heteronuclear molecule inelastic collision. We found that the

NF decomposition of the scattering amplitude provides a clear Now J = my andJ = ny + 1 correspond to = 0 andn = 1,
physical interpretation of the angular scattering, except some- 'espectively. Since

times for6 ~ 0°, 18C°. We also demonstrated that a resum-

mation of the PWS can improve the usefulness of the NF Pg“'ﬂ)(cose) =1

technique when the N and F cross sections possess small
oscillations. The resummation procedure exploits recurrence and
properties of reduced rotation matrix elements to extract the
factor @ + Bcos#)~! from the PWS. We proposed a rule of
thumb for choosingo. and f so as to produce physically
meaningful NF decompositions.

P“P(cosh) = %[(a + B+ 2) cost + o — f]

we obtain from eq A.4 the following results
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and

12

(m + 1)!
(my+ m + Dl(my — m + 1)}

[(m + 1) cosf — mllsin(g)]m—mlcos(g)

Using these formulas, it can be verified that expression A.3 is
equal todm’fml(e), i.e., eq A.1, is valid fod = nx as well as for

J =y —l—ni, my + 2, .... For the special casa = m = 0 ,we
havedé,o(e) = Py(cos ) and eq A.1 forJ — O reduces td>;-

(cos8) = (cos6)Py(cosh) = cosh, a well-known result.

A m(0) =

meHm
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